skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haines, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Online professional development (PD) can reach teachers from widespread areas. Here, we describe PD activities that are part of a project focused on integrated science, technology, engineering, and mathematics (iSTEM) teaching self-efficacy and effectiveness among earlycareer elementary teachers. Toward our objective of building a community of elementary teachers focused on improving their iSTEM teaching, we are conducting online PD institutes over four summers. These PD institutes are designed using Desimone’s five critical features of effective PD: content focus, active learning, coherence, duration, and collective participation. Our institutes engage teachers in an initial synchronous online session, which is followed by independent work time to put their learning into practice. It concludes with a final synchronous online session where teachers share their asynchronous work, receive feedback, and identify the next steps in enacting their learning in the classroom. Below we describe the first year’s PD activities. 
    more » « less
  2. Online professional development (PD) can reach teachers from widespread areas. Here, we describe PD activities that are part of a project focused on integrated science, technology, engineering, and mathematics (iSTEM) teaching self-efficacy and effectiveness among early-career elementary teachers. Toward our objective of building a community of elementary teachers focused on improving their iSTEM teaching, we are conducting online PD institutes over four summers. These PD institutes are designed using Desimone’s five critical features of effective PD: content focus, active learning, coherence, duration, and collective participation. Our institutes engage teachers in an initial synchronous online session, which is followed by independent work time to put their learning into practice. It concludes with a final synchronous online session where teachers share their asynchronous work, receive feedback, and identify the next steps in enacting their learning in the classroom. Below we describe the first year’s PD activities. 
    more » « less
  3. Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities. 
    more » « less
  4. Abstract The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster. 
    more » « less
  5. null (Ed.)
    This report documents the results of X-ray diffraction analyses of 132 mud and mudstone samples collected offshore Sumatra during International Ocean Discovery Program Expedition 362. The clay-size mineral assemblage consists of smectite, illite, chlorite, kaolinite, and quartz. The relative abundance of smectite at Site U1480 decreases downsection from a mean value of 33 wt% in Unit I to a mean of 19 wt% in Unit II; illite increases from a mean of 49 wt% to a mean of 59 wt%. Smectite in Unit III increases to a mean of 73 wt%, and illite decreases to a mean of 19 wt%. Mean values are subordinate (<16 wt%) for undifferentiated chlorite + kaolinite and <7 wt% for quartz in all units. A significant compositional discrepancy occurs between Subunit IIIA at Site U1480 (mean smectite = 64 wt%) and Unit III at Site U1481 (mean smectite = 36 wt%). At Site U1480, the expandability of illite/smectite mixed-layer clays increases downsection, which is opposite to the trend expected with burial diagenesis. The maximum value is 88% within smectite-rich samples from Unit III. Values of the illite crystallinity index are between 0.42Δ°2θ and 0.76Δ°2θ, with most data straddling the generic boundary between advanced diagenesis and anchimetamorphism. Illite (060) reflections yield bo values of 8.988 to 9.000, which are indicative of low phengite contents. Smectite (060) reflections display peak apex positions of 61.998°–61.798°2θ, which are consistent with the mineral structure of montmorillonite. The detrital illite fraction contains 46%–60% 2M1 polytype, and the remainder is 1M/1Md. 
    more » « less
  6. A search for hidden-charm pentaquark states decaying to a range of Σ c D ¯ and Λ c + D ¯ final states, as well as doubly charmed pentaquark states to Σ c D and Λ c + D , is made using samples of proton-proton collision data corresponding to an integrated luminosity of 5.7 fb 1 recorded by the LHCb detector at s = 13 TeV . Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of the Λ c + baryon in the Λ c + p K π + decay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases. © 2024 CERN, for the LHCb Collaboration2024CERN 
    more » « less
  7. Garisto, R (Ed.)
    The ratios of branching fractions R(D*)= B(B0 --> D*+tau- nu(bar))/ B(B0--> D*+mu- nu(bar)) and R(D)= B(B0 --> D0tau- nu(bar))/ B(B0 --> D0mu- nu(bar)) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ− → μ−ντν¯μ. The measured values are R*D*)= 0.281+/- 0.018+/- 0.024 and R(D0)=0.441+/- 0.060+/- 0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ= −0.43. The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard model 
    more » « less